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Abstract  

This paper presents a technique for identification and classification of short-circuit faults in case 

of double circuit transmission lines with different sources. The current signals at different 

terminals have been studied extensively. The signals of two terminals of the network have been 

chosen for feature extraction. Discrete S-Transform (DST) has been used for feature extraction 

from the current signals. These features have been used as input parameters for training a 

Probabilistic Neural Network (PNN) to identify the type of fault. Back Propagation Neural 

Network (BPNN) has been used for obtaining fault location. Double Line short-circuit and 

Double Line-Ground crossover faults have been simulated under different conditions. 

Satisfactory results have been obtained involving minimum time of computation and high 

accuracy. All the programming and simulations have been done in MATLAB environment 
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1. Introduction 

 

A fault is an inevitable phenomenon in a power system network. Uninterrupted power 

transmission is of utmost importance which requires a robust and accurate protection system. 
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Accurate, fast, and reliable fault classification technique is an important operational requirement 

in modern-day power transmission systems. On the other hand, the information of the type of 

fault is needed for fault location estimation. The soft computing techniques have shown relatively 

better performance in the method of fault classification with respect to speed and accuracy. The 

methods mainly involve the simulations of network and faults in reliable softwares like EMTP, 

PSCAD and MATLAB, involving the application of signal processing tools i,e, Wavelet 

transform and S-Transform. 

The electrical power is transmitted either by single circuit system or double circuit system. Short 

circuit faults are quite common and in a double circuit system there remains a scope of crossover 

short-circuit in which two phases of different circuits are involved. Identification of such faults 

and determining their location is a challenging task.   

A scheme of determination of fault location for a double circuit compensated transmission lines 

has been proposed in [1] where the location has been estimated by using Discrete Wavelet 

Transform (DWT) and KNN with less than 1 % error. A new approach of fault classification has 

been presented in [2] for EHV transmission lines using Rough Membership Neural network 

(RMNN). DWT has been used for feature extraction and a comparative analysis has been shown 

between RMNN and BPNN to establish that RMNN is faster and more accurate than BPNN as a 

classifier.  The fault location has not been determined here.  A hybrid method of ANN and DWT 

has been suggested in [3] for identification of faulty section and obtaining its location in a 

distribution network. The proposed method in this paper has been tested on a IEEE system but 

the effect of noise on the features extracted has not been discussed here. The paper [4] proposes 

an approach by combining independent component analysis (ICA) with travelling wave (TW) 

theory and Support Vector Machine (SVM) for fault analysis of HV Transmission lines. This 

method gives better performance in presence of noise. A new technique for fault location on 

transmission lines using only voltage measurements obtained from Wide Area Measurement 

Systems (WAMS) and the network bus admittance matrix has been reported in [5].  Fault 

classification has also been included in this paper using the same technique. In [6] inter-circuit 

shunt faults and cross-country faults in a double circuit system have been identified and classified 

using DWT and SVM. In this paper, the method of determining fault location and the effect of 

noise has not been discussed. A hybrid framework consisting of a proposed two-stage finite 

impulse response (FIR) filter, four support vector machines (SVMs), and eleven support vector 

regressions (SVRs) is implemented in [7] for classifying and locating short circuit faults in power 
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transmission lines. SVM has been also applied in [8] for fault classification in a long transmission 

line in which the features have been selected using wavelet packet transform. 

In this paper, a method is proposed for identification of the type of fault and obtaining its 

corresponding location in a double circuit system. ANN has been involved here in which PNN is 

used for fault classification and BPNN for obtaining the fault location. The input features of both 

the PNN and BPNN have been obtained from DST of the current signals measured at any one 

terminal of the network. All the faults have been simulated in MATLAB environment. The scope 

of this paper is limited to the simulation of only double line short –circuit faults. 

The rest of the paper is organized as follows. The simulation of faults in a double circuit network 

is described in section 2. DST is briefly discussed in section 3. The results of fault simulations 

and the extraction of features needed for fault analysis have been described in Section 4. Section 

5 explains the method of fault classification and obtaining its location. The effect of noise has 

also been studied in this section. 

 

2. Simulation of Faults and the System under study 

A  3-phase double circuit power system network with three different sources has been simulated 

using the Simpower Toolbox of MATLAB-7 and is shown in Fig. 1. The length of each 

transmission line is 300 km.  

System parameters: 

Generator 1: Voltage = 220 kV, Three phase short-circuit level = 2250 MVA, X/R ratio = 15. 

Generator 2: Voltage = 440 kV, Three phase short-circuit level = 4250 MVA, X/R ratio = 20. 

Generator 3: Voltage = 132 kV, Three phase short-circuit level = 1250 MVA, X/R ratio = 10. 

Transmission Lines 1&2: Length = 300 km, R1 = 0.02336Ω/km, R2 =  0.02336Ω/km, R0 =  

0.38848Ω/km, L1 = 0.95106mH/km, L2 = 0.95106mH/km, L0 = 3.25083mH/km,  

C1 = 12.37nF/km, C2 = 12.37nF/km, C0 = 8.45 nF/km. 

The sampling times of all the signals is taken to be 78.28 μs and the time period of simulation in 

MATLAB has been taken up to 0.04 secs. The sampling frequency is 12.8 kHz.  

Crossover two phase short-circuit faults have been simulated in the following way as given 

below: 

Double Line (L-L) Faults: 

A1A2: Phase A of Line 1, A1 shorted to phase A of line 2, A2 

A1B2: Phase A1 of Line 1, A1 shorted to phase B of line 2, B2 

A1C2: Phase A1 of Line 1, A1 shorted to phase C of line 2, C2 
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B1A2: Phase B1 of Line 1, B1 shorted to phase A of line 2, B2 

B1B2: Phase B1 of Line 1, B1 shorted to phase B of line 2, B2 

B1C2: Phase B1 of Line 1, B1 shorted to phase C of line 2, C2 

C1A2: Phase C of Line 1, C1 shorted to phase A of line 2, A2 

C1B2: Phase C of Line 1, C1 shorted to phase B of line 2, B2 

C1C2: Phase C of Line 1, C1 shorted to phase C of line 2, C2 

 

Double-Line-Ground faults have been simulated in the similar way. 

Hence, the total number of the type of fault simulations (including both LL and LLG) is 18. 

All the faults have been initiated at 19 different locations starting from B1, each being 10 km 

apart. The fault resistances considered for the simulation are from the range of 0-100Ω in steps of 

20Ω.  Fault inception angle is considered to be 00. The total number of fault simulations made in 

this system is 18×19×6 =2052. 

 

 

Fig.1: Single Line diagram of three phase double circuit network with three different sources 

 

3. Discrete S-Transform (DST)  

The S-Transform is an effectively efficient tool for time frequency representation (TFR) of a time 

series. ST is a hybrid of the STFT and WT and it produces a frequency dependent resolution with 

simultaneously localizing the real and imaginary spectra. Due to its easy interpretation, multi-

resolution analysis and the ability of maintaining the meaningful local phase information, the ST 

has established successes in many areas including power quality, geophysics and biomedicine [9]. 

An electrical signal h(t) can be expressed in discrete form as h(kT), k = 0, 1, ……., N-1 and T is 
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the sampling time interval,[9,10]. 

The discrete Fourier transform of h(kT) is obtained as, 

21
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and 
2 2 22 /( , ) m nG m n e  , 0n  where j, m = 0,1,2,…….N-1 and n = 1,2,……N-1 

Equation (2) generates a complex matrix (S-matrix) the rows of which are the frequencies, 

whereas the columns are the corresponding times. The amplitude of the ST spectrum is obtained 

from the absolute values of the complex matrix. Each column, thus, represents the local spectrum 

at one point in time. The matrix preserves the amplitude information of the frequency content of 

the signal at different resolutions. 

4 Results of Simulation and Feature extraction from the current signals  

The waveforms of the current signals for both A1B2G and A1B2 types of faults have been 

obtained from simulation at the busbars B1, B2, B3 and B4 and have been shown in Figs. [2]-[5] . 

          

                      2 (a)                                                                                2(b) 

Fig. 2 (a): Current waveforms of the three phases A1, B1, C1  for a A1B2G type of fault at 

100km from B1 with RF = 0 Ω and fault inception angle = 00 
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          2 (b):  Current waveforms of the three phases A2, B2, C2  for a A1B2G type of fault at 

100km from B2 with RF = 0 Ω and fault inception angle = 00. 

 

 

                                   3(a)                                                                             3 (b) 

Fig. 3 (a): Current waveforms of the three phases A1, B1, C1  for a A1B2G type of fault at 100km 

from B3 with RF = 0 Ω and fault inception angle = 00 

Fig. 3 (b): Current waveforms of the three phases A2, B2, C2  for a A1B2G type of fault at 100km 

from B4 with RF = 0 Ω and fault inception angle = 00 

 

4(a)                                                                 4(b) 

Fig. 4 (a): Current waveforms of the three phases A1, B1, C1  for a A1B2 type of fault at 100km 

from B1 with RF = 0 Ω and fault inception angle = 00 

Fig. 4 (b): Current waveforms of the three phases A2, B2, C2  for a A1B2 type of fault at 100km 

from B2 with RF = 0 Ω and fault inception angle = 00 
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                                 5(a)                                                                          5(b) 

Fig. 5 (a): Current waveforms of the three phases A1, B1, C1  for a A1B2 type of fault at 100km 

from B3 with RF = 0 Ω and fault inception angle = 00 

Fig. 5 (b): Current waveforms of the three phases A2, B2, C2  for a A1B2 type of fault at 100km 

from B4 with RF = 0 Ω and fault inception angle = 00 

 

The current signals shown in Figs. [2-5] indicate that a fault has occurred in the network. But it is 

difficult to identify the type of fault from the signals. Henceforth, appropriate selection of feature 

is necessary.  

 

4.1 Feature extraction 

In this paper, two types of features (Xarea, Xpeak) have been obtained from the absolute values 

of S-matrices of all the current signals shown in figs. [2-5] 

The feature Xarea for all the four terminals B1, B2, B3 and B4 have been obtained in the similar 

way as explained in [13] .   

The other feature Xpeak has been obtained in the following steps as explained below: 

 The sum of each column of the absolute value of the S-matrix is obtained along its entire 

row, producing a row matrix. 

 The maximum value of this row matrix is considered as Xpeak. 

 The variation of the features Xarea and Xpeak for all the four terminals at different fault 

locations in case of A1B2G type of fault has been shown in Figs [6-7].  

    

(a)                                                                     (b) 

Fig 6: Variation of magnitudes of the features (a) XareaB1 and (b) XpeakB1 for different 

fault locations in case of A1B2G type of fault 
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(a)                                                                         (b) 

Fig 7: Variation of magnitudes of the features (a) XareaB2 and (b) XpeakB2 for different 

fault locations in case of A1B2G type of fault 

   

(a)                                                     (b) 

Fig 8: Variation of magnitudes of the features (a) XareaB1 and (b) XpeakB1 for different 

fault locations in case of A1B2 type of fault 

 

5. Fault Classification and Determination of fault location  

5.1 Fault Classification 

From the Figs [6]-[8] it is difficult to distinguish between A1B2G and A1B2 types of faults. 

Henceforth a suitable classification tool is necessary to identify the type of fault from the 

features. PNN is a fast and widely accepted ANN tool for classification purposes [13]. In this 

paper, the two types of features Xarea and Xpeak have been effectively trained by the PNN 

architecture for fault classification.   

 The features XareaB1, XpeakB1, XareaB2, XpeakB2 of the six phases have been used as input 

parameters. The magnitudes of the features for a few fault locations have been shown in Tables 1 

and 2. The features of 10 current signals of each phase are used for training and the rest are used 

for testing purpose. The output of the PNN is summarised in Table 4. The average of correct 

predictions in case of LL faults and LLG faults is 98.5% and 98.6% respectively. 
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Table 1: Magnitudes of the features XareaB1 and XareaB2 in case of A1B2G type of fault 

 

Magnitude of XareaB1 (p.u.) 

Magnitude of XareaB2 

(p.u.) 

Fault 

Location 

(in km) 

Phase 

A1 

Phase 

B1 Phase C1 

Phase 

A2 

Phase 

B2 

Phase 

C2 

10 92.02 3.73 6.62 8.26 109.5 13.64 

20 73.98 2.61 5.3 6.59 95.35 11.46 

30 61.98 1.95 4.49 5.52 84.12 10.32 

40 53.48 1.81 4.1 4.73 75.06 9.43 

50 46.74 1.19 3.78 3.71 68.11 8.49 

60 41.48 0.86 3.31 2.83 61.21 7.59 

70 37.63 1.34 3.09 2.7 55.9 7.19 

80 33.99 1.21 2.6 1.97 51.85 6.47 

90 31.57 1.56 2.62 1.53 47.61 6.11 

100 29.51 1.77 2.56 1.21 44.28 5.92 

110 26.81 1.64 1.99 1.34 41.28 5.27 

120 25.04 1.83 1.98 1.68 38.42 4.98 

130 23.48 1.92 1.84 2.24 35.88 4.59 

140 22.15 2.23 1.73 2.55 33.39 4.41 

150 21.16 2.36 1.66 2.89 31.25 4.35 

160 20.01 2.66 1.61 3.24 29.65 4.17 

170 18.84 2.43 1.33 3.44 27.75 3.6 

180 18.19 2.73 1.42 4.02 26.55 3.55 

190 17.45 2.79 1.4 4.64 25.29 3.3 

200 16.84 3.37 1.63 5.03 24.27 3.59 

 

Table 2: Magnitudes of the features XpeakB1 and XpeakB2 in case of A1B2G type of fault 

 Magnitude of XpeakB1 (p.u.) Magnitude of XpeakB2 (p.u.) 

Fault 

Location 

(in km) Phase A1 

Phase 

B1 

Phase 

C1 Phase A2 

Phase 

B2 

Phase 

C2 

10 7.12 0.53 0.8 0.93 8.72 1.39 

20 5.82 0.47 0.61 0.66 7.77 1.22 

30 5.05 0.44 0.44 0.56 6.82 1.08 

40 4.5 0.32 0.41 0.47 6.11 1.01 

50 4 0.28 0.36 0.5 5.55 0.92 

60 3.49 0.26 0.36 0.34 4.95 0.84 

70 3.19 0.44 0.38 0.37 4.57 0.74 

80 2.96 0.42 0.37 0.37 4.33 0.71 

90 2.83 0.41 0.4 0.28 3.97 0.63 

100 2.57 0.34 0.29 0.28 3.71 0.63 

110 2.34 0.34 0.22 0.31 3.43 0.62 

120 2.29 0.33 0.28 0.29 3.18 0.53 

130 2.08 0.22 0.25 0.35 2.98 0.55 
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140 2 0.36 0.19 0.36 2.75 0.5 

150 1.82 0.29 0.2 0.34 2.56 0.46 

160 1.71 0.27 0.2 0.41 2.53 0.47 

170 1.71 0.31 0.21 0.4 2.31 0.41 

180 1.67 0.34 0.2 0.43 2.18 0.38 

190 1.59 0.32 0.18 0.5 2.12 0.4 

200 1.49 0.35 0.19 0.49 1.99 0.37 

 

Table 3: Magnitudes of the features XpeakB1 and XpeakB1 in case of A1B2 type of fault 

 

Magnitude of XareaB1 (p.u.) Magnitude of XpeakB1 (p.u.) 

Fault 

Location 

(in km) Phase A1 

Phase 

B1 

Phase 

C1 Phase A1 

Phase 

B1 

Phase 

C1 

10 69.11 2.12 5.44 5.64 0.28 0.51 

20 58.31 1.45 4.62 4.84 0.2 0.49 

30 50.38 0.96 4 4.18 0.16 0.55 

40 44.23 0.61 3.58 3.66 0.13 0.59 

50 39.39 0.62 3.17 3.24 0.14 0.52 

60 35.48 0.83 3.01 2.92 0.13 0.4 

70 32.24 1 2.7 2.77 0.17 0.33 

80 29.57 1.05 2.43 2.57 0.16 0.4 

90 27.3 1.23 2.4 2.26 0.18 0.37 

100 25.4 1.54 2.33 2.12 0.19 0.36 

110 23.48 1.59 1.98 1.95 0.22 0.28 

120 21.9 1.73 1.7 1.88 0.2 0.36 

130 20.63 2 1.71 1.72 0.24 0.24 

140 19.24 2.17 1.73 1.59 0.24 0.25 

150 18.12 2.2 1.68 1.54 0.23 0.32 

160 17.14 2.4 1.51 1.51 0.26 0.23 

170 16.27 2.5 1.64 1.39 0.25 0.29 

180 15.58 2.69 1.57 1.41 0.29 0.22 

190 14.92 2.91 1.38 1.35 0.3 0.18 

200 14.26 3.04 1.25 1.26 0.29 0.16 

 

 

Table 4: Results of fault classification from the PNN 

 

Type of Fault 

 

PNN output 

 

% of correct 

predictions 

 

Type of Fault 

 

PNN output 

 

% of correct 

predictions 

A1A2 1 97.6 A1A2G 10 97.8 

A1B2 2 97.9 A1B2G 11 97.9 

A1C2 3 98.5 A1C2G 12 98.7 
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B1A2 4 98.0 B1A2G 13 97.8 

B1B2 5 99.4 B1B2G 14 99.5 

B1C2 6 98.4 B1C2G 15 98.5 

C1C2 7 99.5 C1C2G 16 98.9 

C1B2 8 97.6 C1B2G 17 98.7 

C1A2 9 99.6 C1A2G 18 99.5 

   No fault 19 99.6 

 

5.2 Determination of fault location 

The fault location has been obtained from a BPNN. Properly trained backpropagation networks 

tend to give reasonable answers when presented with inputs that they have never seen [13]. Once 

the short-circuited phases have been identified from the PNN, the parameter Xarea or Xpeak of 

any one of the faulty phases has been used as the input feature as the pattern of variation of both 

the parameters with respect to fault location is almost same.  In case of A1B2G and A1B2 type of 

faults, the features XareaB1 obtained corresponding to phase A1 for different fault locations have 

been used for training the BPNN. The features of 10 current signals have been used for training 

and the rest are used for testing purpose. Levenberg–Marquardt (LM) algorithm has been used for 

training the BPNN. The percentage error is calculated during estimation of fault location as 

shown in Table 5 and according to equation (3). Table 5 show the results of fault location 

obtained from the BPNN in case of A1B2 type of fault. 

 100
ActualFaultLocation BPNNoutput

ActualFaultLocation


                               (3) 

 

The maximum error achieved in obtaining fault location is 1.03% and 1.43% for LL and 

LLG faults respectively. 

 

Table 5: Fault location in case of A1B2 and A1B2G type of fault with Fault resistance, RF = 0Ω 

Type of fault: A1B2 Type of fault: A1B2G 

Actual Fault 

Location 

(km) 

 

BPNN output 

(km) 

 

% error 

Actual Fault 

Location 

(km) 

 

BPNN output 

(km) 

 

% error 

15 14.95 0.33 15 15.05 -0.33 

25 25.12 -0.48 25 25.12 -0.48 
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35 34.64 1.03 35 35.50 -1.43 

45 45.05 -0.11 45 45.21 -0.47 

55 55.05 -0.09 55 55.12 -0.22 

65 64.56 0.68 65 65.56 -0.86 

75 75.32 -0.43 75 75.12 -0.16 

85 85.43 -0.51 85 85.03 -0.04 

95 95.15 -0.16 95 95.25 -0.26 

105 105.40 -0.38 105 105.40 -0.38 

. 

5.3 Implementation of noisy signals 

The current signals obtained at the Bus B1 and Bus B2 from simulation for both LL and LLG 

faults have been impregnated with 20dB white Gaussian noise by programming in MATLAB. 

The variation of the features XareaB1 and XpeakB1 with respect to fault location have been 

plotted in Fig. 9 in presence of noise. From Fig. 9 it is observed that the profile of variation of 

both the features is same with that of the Figs. [6-8]. The results of classification and estimation 

of fault location have been given in Tables 6 and 7. The average of correct classifications from 

PNN is 98.4% and 98.5 % in case of LL and LLG faults respectively. The maximum error 

achieved in obtaining fault location is 2.05% and 2.43% for LL and LLG faults respectively. 

   

(a)                                                                              (b) 

Fig 9: Variation of magnitudes of the features (a) XareaB1 and (b) XpeakB1 for different 

fault locations in case of A1B2G type of fault with noisy current signals 

 

Conclusion 

The accuracy of fault classification depends largely on the appropriate selection of features 

from the current/voltage signals of a power system network. In this paper, only the current signals 

of two terminals of the network have been used for extracting features. Twelve features (two for 
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each line) are needed for the six lines to identify the affected phases from PNN. Only one feature 

of the affected phase is needed for obtaining fault location from the BPNN. The faults have been 

simulated at different locations with variation in fault resistance. The effect of noise has also been 

studied. The average percentage of correct classifications from the PNN is in the range of 98.4-

98.6% including the presence of noise in the current signals. The faults have been located by the 

BPNN with the maximum error lying in the range of 1.03%-2.43% considering the presence 

/absence of noise. The results indicate that the proposed method of fault classification and 

estimation of fault location can be effectively implemented for other multi-terminal systems as 

well.  

The present work can be further extended for the analysis of Line-Ground faults, and Three phase 

short-circuit faults in which phases of different circuits are also involved. 
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